InfluentialPoints.com
Biology, images, analysis, design...
Use/Abuse Stat.Book Beginners Stats & R
"It has long been an axiom of mine that the little things are infinitely the most important" (Sherlock Holmes)

Statistics bibliography 06 - stats

Anscombe, F.J. (1948). The transformation of Poisson, binomial and negative-binomial data. Biometrika 35 (3-4), 246-254. http://dx.doi.org/10.1093/biomet/35.3-4.246

 

Aebischer, N.J. et al. (1993) Compositional analysis of habitat use from animal radio-tracking data. Ecology 74 (5), 1313-1325. http://dx.doi.org/10.2307/1940062

 

Agresti, A. & Coull, B.A. (1998) Approximate is better than 'exact' for interval estimation of binomial proportions.. The American Statistician. 52 (2),119-126. http://www.jstor.org/pss/2685469

 

Agresti, A. & Min, Y. (2001). On small-sample confidence intervals for parameters in discrete distributions. Biometrics. 57 (3), 963-971. http://dx.doi.org/10.1111/j.0006-341X.2001.00963.x

 

Agresti, A. & Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician 54 (4), 280-288. http://www.jstor.org/pss/2685779

 

Agresti, A. (2001). Exact inference for categorical data: recent advances and continuing controversies. Statistics in Medicine 20 (17-18), 2709-2722. http://dx.doi.org/10.1002/sim.738

 

Armitage, P. & Berry, G. (2002). Statistical methods in medical research. 4th Edn. Blackwells, Oxford.

 

Agresti, A. & Gottard, A. (2005). Comment: Randomized confidence intervals and the mid-P approach. Statistical Science 20 (4), 367-371. http://dx.doi.org/10.1214/088342305000000403 http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.ss/1137076653&view=body&content-type=pdfview_1 [free pdf]

 

Alf, C & Lohr, S. (2007). Sampling assumptions in introductory statistics classes. The American Statistician 61 (1), 71-77. http://dx.doi.org/10.1198/000313007X171098 ftp://filer.soc.uoc.gr/Psycho/Zampetakis/%D3%F4%E1%F4%E9%F3%F4%E9%EA%DE%20%C9/%C5%F1%E3%E1%F3%DF%E5%F2/ergasies%20statistiki1/OMADA_11.pdf [free pdf]

 

Bacon, F. (1597). De Haeresibus in Meditationes Sacrae. Published by Kessinger Publishing (1996).

 

Bartlett, M.S. (1936). The square-root transformation in analysis of variance. Journal of the Royal Statistical Society 3 (1), 68-78. http://dx.doi.org/10.2307/2983678

 

Bartlett, M.S. (1947). The use of transformations. Biometrics 3 (1), 39-52. http://dx.doi.org/10.2307/3001536

 

Belia, S. et al. (2005). Researchers misunderstand confidence intervals and standard error bars. Psychological Methods 10 (4), 389-396. http://dx.doi.org/10.1037/1082-989X.10.4.389 http://isites.harvard.edu/fs/docs/icb.topic477909.files/misunderstood_confidence.pdf [free pdf]

 

Berry, G. & Armitage, P. (1995). Mid-P confidence intervals: a brief review. The Statistician 44 (4), 417-423. http://www.jstor.org/pss/2348891 http://members.optusnet.com.au/gberrycons/GB%20Web_files/Pub%20124.pdf [free pdf]

 

Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. The Canadian Journal of Statistics 28 (4), 783-798. http://dx.doi.org/10.2307/3315916 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.9682&rep=rep1&type=pdf [free pdf]

 

Bland J.M. & Altman D.G. (1996). Transforming data. BMJ 312, 770 (23 March). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2350481/pdf/bmj00534-0056.pdf [free]

 

Bland J.M. & Altman D.G. (1996). Transformations, means, and confidence intervals. BMJ 312, 1079 (27 April). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2350916/pdf/bmj00539-0035.pdf [free pdf]

 

Bland J.M. & Altman D.G. (1996). The use of transformation when comparing two means. BMJ 312, 1153 (4 May). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2350653/pdf/bmj00540-0047.pdf [free pdf]

 

Bland, M. (2000). An introduction to medical statistics. 3rd Edition Oxford University Press, Oxford.

 

Brown, L.D. et al. (2001). Interval estimation for a binomial proportion. Statistical Science 16 (2), 101-133. http://dx.doi.org/10.1214/ss/1009213286 http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.ss/1009213286 [free pdf]

 

Box, G.E.P. & Cox, D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B 26 (2), 211-252. http://www.jstor.org/stable/2984418

 

Buckland, S.T. et al. (1993). Distance sampling : Estimating abundance of biological populations. Chapman & Hall, London. http://www.colostate.edu/depts/coopunit/download.html [free on-line book pdf]

 

Cai, Y. & Krishnamoorthy, K. (2004). A simple improved inferential method for some discrete distributions. Computational Statistics & Data Analysis 48 (3), 605-621. http://dx.doi.org/10.1016/j.csda.204.03.008 http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf [free pdf]

 

Carpenter, J. (1999). Test inversion bootstrap confidence intervals. Journal of the Royal Statistical Society B 61 (1), 159-172 http://dx.doi.org/10.1111/1467-9868.00169

 

Carpenter, J. & Bithell, J. (2000). Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Statistics in Medicine 19 (9), 1141-1164. http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.8405&rep=rep1&type=pdf [free pdf]

 

Chernick, M.R. (1999). Bootstrap methods, A practitioners guide. Wiley.

 

Cochran, W.G. (1977). Sampling techniques. 3rd Edn. John Wiley & Sons, New York.

 

Cohen, G.R. & Yang, S.-Y. (1994). Mid-p confidence intervals for the poisson expectation. Statistics in Medicine 13 (21), 2189-2203. http://dx.doi.org/10.1002/sim.4780132102

 

Clopper, C. & Pearson, E.S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26 (2), 404-413. http://dx.doi.org/http://biomet.oxfordjournals.org/cgi/pdf_extract/26/4/404

 

Conover, W.J. (1999). Practical nonparametric statistics. 3rd Edn. John Wiley & Sons, New York.

 

Collett, D. (1991). Modelling binary data. Chapman & Hall, London.

 

Crowley, P.H. (1992). Resampling methods for computation-intensive data analysis in ecology and evolution. Annual Review of Ecology and Systematics 23, 405-447. http://www/jstor.org/stable/2097295 http://pascencio.cos.ucf.edu/classes/Methods/Crowley_1992.pdf [free pdf]

 

Curran-Everett, D. (2008). Explorations in statistics: confidence intervals. Advances in Physiology Education 33, 87-90. http://dx.doi.org/10.1152/advan.00006.2009 http://advan.physiology.org/cgi/reprint/33/2/87.pdf [free pdf]

 

Cumming, G. et al. (2004). Replication, and researchers' understanding of confidence intervals and standard error bars. Understanding Statistics 3, 299-311. http://dx.doi.org/10.1207/s15328031us0304_5

 

Cumming, G. & Finch, S. (2005). Inference by eye: Confidence intervals, and how to read pictures of data. American Psychologist 60 (2), 170-180. http://homepage.psy.utexas.edu/HomePage/Class/Psy391P/CI's%20by%20Eye.2005.pdf [free pdf]

 

Daly, L.E. (1998). Confidence limits made easy: interval estimation using a substitution method. American Journal of Epidemiology 147 (8), 783-790. http://aje.oxfordjournals.org/cgi/reprint/147/8/783.pdf [free pdf]

 

Davison, A.C. & Hinkley, D.V. (2006). Bootstrap methods and their application. 8th Edn. Cambridge University Press.

 

Davison, A.C. & Kuonen, D. (2002). An introduction to the bootstrap with applications in R. Statistical Computing & Statistical Graphics Newsletter 13 (1), 6-11. http://stat-computing.org/newsletter/issues/scgn-13-1.pdf [free pdf]

 

Denwood, M.J. et al. (1998) Comparison of three alternative methods for analysis of equine Faecal Egg Count Reduction Test data . Preventive Veterinary Medicine 93 (1), 316-323. http://dx.doi.org/10.1016/j.prevetmed.2009.11.009 http://theses.gla.ac.uk/1837/01/2010denwoodphd.pdf [free pdf of original thesis]

 

DiCiccio T. & Efron B. (1996). Bootstrap confidence intervals. Statistical Science 11 (3), 189-228. http://dx.doi.org/10.1214/ss/1032280214 http://staff.ustc.edu.cn/~zwp/teach/Stat-Comp/Efron_Bootstrap_CIs.pdf [free pdf]

 

Dixon, P.M. (2002).. Bootstrap resampling. In: El-Shaarawi, A. & Pegorsch, W.W. (Ed) Encyclopedia of Environmetrics Wiley http://dx.doi.org/10.1002/9780470057339.vab028 http://onlinelibrary.wiley.com/doi/10.1002/9780470057339.vab028/pdf [free pdf]

 

Conan Doyle, A. (1890). The sign of four. http://www.bibliomania.com/0/0/182/2387/frameset.html [free html]

 

Efron, B. & Gong, G. (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician 37 (1), 36-48. http://www.jstor.org/stable/2685844 http://www.georgiahealth.edu/research/biostat/journalclub/A%20leisurely%20look%20at%20the%20bootstrap.pdf [free pdf]

 

Efron B. & Tibshirani R. (1993). An introduction to the bootstrap. Chapman and Hall, New York.

 

Eypasch, E. et al. (1995). Probability of adverse events that have not yet occurred: a statistical reminder. BMJ 311, 619-620 (2 September). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2550668/pdf/bmj00608-0045.pdf [free pdf]

 

Fleiss, J.L. et al. (2003). Statistical methods for rates and proportions. 3rd edn. John Wiley & Sons, New York.

 

Freeman, M.F. & Tukey, J.W. (1950). Transformations related to the angular and the square root. Annals of Mathematical Statistics 21 (4), 607-611. http://links.jstor.org/sici?sici=0003-4851(195012)21%3A4%3C607%3ATRTTAA%3E2.0.CO%3B2-O

 

García-Pérez, M.A. (2005). On the confidence interval for the binomial parameter. Quality and Quantity 39 (4), 467-481. http://dx.doi.org/10.1007/s11135-005-0233-3

 

Garwood, F. (1936). Fiducial limits for the Poisson distribution. Biometrika 28, 437-442. http://dx.doi.org//10.1093/biomet/28.3-4.437 http://sisla06.samsi.info/astro/sd/garwood.pdf [free pdf]

 

Gaston, K.J. & McArdle, B. et al. (1994). The temporal variability of animal abundances: measures, methods and patterns. Philosophical Transactions of the Royal Society of London B 345 (1314), 335-358. http://dx.doi.org/10.1098/rstb.1994.0114 http://rstb.royalsocietypublishing.org/content/345/1314/335.full.pdf+html [free pdf]

 

Greenland, S. (2004). Interval estimation by simulation as an alternative to and extension of confidence intervals. International Journal of Epidemiology 33 (6), 1389-1397. http://dx.doi.org/10.1093/ije/dyh276 http://ije.oxfordjournals.org/content/33/6/1389.full.pdf+html [free pdf]

 

Grunkemeier, G.L. & Wu, Y. (2004). Bootstrap resampling methods: Something for nothing? Annales of Thoracic Surgery 77, 1142-1144. http://dx.doi.org/10.1016/j.athoracsur.2004.01.005 http://homepages.ulb.ac.be/~aleveque/epitraumac/pdf-ppt/articlebootstrap.pdf [free pdf]

 

Haddon, M. (2010) Modelling and Quantitative Methods in Fisheries. 2nd Edn. Chapman & Hall/CRC. 480 pp.

 

Hall, P. (1988a). On symmetric bootstrap confidence intervals. Journal of the Royal Statistical Society B 50 (1), 35-45. http://www.jstor.org/stable/2345806

 

Hall, P. (1988b). Theoretical comparison of bootstrap confidence intervals. The Annals of Statistics 16 (3), 927-953. http://www.jstor.org/stable/2241604

 

Hall, P. (1992). The bootstrap and Edgeworth expansion. Springer-Verlag, New York.

 

Haddon, M. (2011). Modelling and Quantitative Methods in Fisheries 2nd Edn. Chapman & Hall. 471 pp.

 

Hanley, J.A. & Lippman-Hand, A. (1983).. If nothing goes wrong, is everything all right? Interpreting zero numerators JAMA 249 (13), 1743-1745. http://dx.doi.org/10.1001/jama.1983.03330370053031

 

Hesterberg, T.C. (1999) . Bootstrap Tilting Confidence Intervals and Hypothesis Tests. Computing Science and Statistics 31, 389-393. Interface Foundation of North America, Fairfax Station, VA http://home.comcast.net/~timhesterberg/articles/Interface99-tiltingCI.pdf [free pdf]

 

Hesterberg, T.C. (2001). Bootstrap tilting diagnostics. Joint Statistical Meetings - Section on Nonparametric Statistics Proceedings of the Statistical Computing Section (CD-ROM), American Statistical Association. http://www.amstat.org/sections/srms/Proceedings/y2002/files/JSM2002-000773.pdf [free pdf]

 

Hesterberg, T. C. (2008a) . It's time to retire the "n >= 30" rule. Proceedings of the American Statistical Association, Statistical Computing Section (CD-ROM) http://home.comcast.net/~timhesterberg/articles/JSM08-n30.pdf [free pdf]

 

Hesterberg, T.C. (2008b). Bootstrap. Wiley Encyclopedia of Clinical Trials. 1-33. http://dx.doi.org/10.1002/9780471462422.eoct392

 

Hurlbert, S.H. & Lombardi, C.M. (2003). Design and analysis: Uncertain intent, uncertain result. Book review of Quinn, G.P. & Keough, M.J. (2002). Experimental design and data analysis for biologists. CUP, New York. Ecology 84 (3), 810-812. http://dx.doi.org/10.1890/0012-9658(2003)084[0810:DAAUIU]2.0.CO;2

 

Johnson, N.J. & Kotz, S. (1969). Discrete distributions. Houghton Mifflin, Boston.

 

Kabaila, P. & Byrne, J. (2000). Exact short Poisson confidence intervals. The Canadian Journal of Statistics 29 (1), 99-106. http://dx.doi.org/10.2307/3316053

 

Keene, O.N. (1995) The log transformation is special. Statistics in Medicine 14 (8), 811-819. http://dx.doi.org/10.1002/sim.4780140810 http://www.faculty.biol.ttu.edu/strauss/Stats/Readings/Keene1995.pdf [free pdf]

 

Killian, L. (1999). Finite-sample properties of percentile and percentile-t bootstrap confidence intervals for impulse responses. Review of Economics and Statistics 81, 652-660. http://dx.doi.org/10.1162/003465399558517

 

Kirkwood, B. & Sterne, J. (2003) 2nd Edn. Essential Medical Statistics Blackwell, Oxford.

 

Lehnert-Batar, A. et al. (2006). Comparison of confidence intervals for adjusted attributable risk estimates under multinomial sampling. Biometrical Journal 48 (5), 805-819. http://dx.doi.org/10.1002/bimj.200510215

 

Llorca J. & Delgado-Rodriguez M. (2000). A comparison of several procedures to estimate the confidence interval for attributable risk in case-control studies. Statistics in Medicine 19 (8), 1089-1099. http://dx.doi.org/10.1002/(SICI)1097-0258(20000430)19:8<1089::AID-SIM411>3.0.CO;2-0

 

Manly, B.F.J. (1997). Randomization, bootstrap, and Monte Carlo methods in biology. 2nd Edn. Chapman & Hall, London.

 

McArdle, B. et al. 1990. Variation in the size of animal populations: patterns, problems and artefacts. Journal of Animal Ecology 59 (2), 439-454. http://dx.doi.org/10.2307/4873

McGarigal, K. et al. (2000) Multivariate statistics for wildlife and ecology research. Springer-Verlag

 

Meyer, J.S. et al. (1986). Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67 (5) 1156-1166. http://www.jstor.org/stable/1938671

 

Newcombe, R. (1998). Two sided confidence intervals for the single proportion: a comparitive evaluation of seven methods. Statistics in Medicine 17 (8), 857-872. http://dx.doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E http://www.stats.org.uk/statistical-inference/Newcombe1998.pdf [free pdf]

 

Newman, T.B. (1995). If almost nothing goes wrong, is almost everything all right? Interpreting small numerators. JAMA 274 (13), 1013. http://dx.doi.org/10.1001/jama.1995.03530130019013

 

O'Hara, R. B. & Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology and Evolution 1, 118-122. http://dx.doi.org/10.1111/j.2041-210X.2010.00021.x http://precedings.nature.com/documents/4136/version/1/files/npre20104136-1.pdf [free pdf]

 

Piegorsch, W. & Bailer, J. (1997). Statistics for environmental biology and toxicology. Chapman & Hall, London.

 

Pippard, B. (1986). In 'Goodbye to the aether' - a review of Harman, P.M. (1985). 'Wranglers and Physicists: Studies in Cambridge mathematical physics in the 19th century'. London Review of Books, March 1986.

 

Platt, R.W. et al. (2000). Bootstrap confidence intervals for the sensitivity of a quantitative diagnostic test. Statistics in Medicine 19 313-322. http://dx.doi.org/10.1002/(SICI)1097-0258(20000215)19:3<313::AID-SIM370>3.0.CO;2-K

 

Poole, C. (2001). Low P-Values or narrow confidence intervals: which are more durable? Epidemiology 12 (3), 291-294. http://www.epidem.com/pt/re/epidemiology/pdfhandler.00001648-200105000-00005.pdf [free pdf]

 

Reiczigel, J. (2003). Confidence intervals for the binomial parameter: some new considerations. Statistics in Medicine 22 (4), 611-621. http://dx.doi.org/10.102/sim.1320 http://www.zoologia.hu/qp/Reiczigel_conf_int.pdf [free pdf]

 

Rothman, K.J. & Greenland, S. (1998). Chapter 13: Fundamentals of epidemiologic data analysis. pp 201-229. In: Rothman, K.J. & Greenland, S. (eds). Modern epidemiology. 2nd Edn. Lippincott, Philadelphia.

 

Sauro, J. & Lewis, J.R. (2005). Estimating completion rates from small saamples using binomial confidence intervals: Comparisons and recommendations. Proceedings of the Human Factors and Ergonomics Society. 49th Annual Meeting. http://www.measuringusability.com/papers/sauro-lewisHFES.pdf [free pdf]

 

Sim, J & Reid, N. (1999). Statistical inference by confidence intervals: Issues of interpretation and utilization. Physical Therapy 79 (2), 186-195. http://physicaltherapyjournal.net/cgi/reprint/79/2/186.pdf [free pdf]

 

Snedecor, G.W. & Cochran, W.G. (1989). Statistical Methods. 8th Edn. Iowa State Press, Iowa, USA.

 

Sokal, R.R. & Rohlf, F.J. (1995). Biometry. The principles and practice of statistics in biological research. 3rd Edn. Freeman, New York.

 

Vollset, S.E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine 12 (9), 809-824. http://dx.doi.org/10.1002/sim.4780120902

 

Woodward, M. (2004). Epidemiology. Study Design and Analysis. 2nd edn. Chapman & Hall/CRC, Boca Raton. 872 pp.

 

Wood, M. (2004). Statistical inference using bootstrap confidence intervals. Significance 1 (4), 180-182. http://dx.doi.org/10.1111/j.1740-9713.2004.00067.x

 

Wood, M. (2005). Bootstrapped confidence intervals as an approach to statistical inference. Organisational Research Methods 8 (4), 454. http://dx.doi.org/10.1177/1094428105280059 http://orm.sagepub.com/cgi/content/abstract/8/4/454 wood.pdf [free pdf]

 

Zar, J.H. (1999). Biostatistical analysis. 4th Edn. Prentice Hall International, London.

 

Zieffler, A. et al. (2011). Comparing groups: Randomization and bootstrap methods using R. Wiley-Blackwell.