![]() Biology, images, analysis, design... |
|
"It has long been an axiom of mine that the little things are infinitely the most important" |
|
(Spearman rank correlation coefficient, Kendall rank-order correlation coefficient, monotonic relationship, Sen's estimator of slope)Statistics courses, especially for biologists, assume formulae = understanding and teach how to do Use and MisuseIn biology non-parametric correlation (especially the Spearman rank correlation coefficient) is probably used as much as parametric correlation. Fortunately it tends to get rather less abused, mainly because the assumption of linearity is relaxed. All that is required is a monotonic (continuously increasing or decreasing) trend. However, this still needs to be checked for using a scatterplot. In one example where no scatterplot was given, a negative correlation was reported as positive - presumably because the author had not noticed the negative sign and had never plotted the data out. When a scatterplot is provided, we sometimes find relationships that are emphatically not monotonic, but are U-shaped or hat-shaped. We give an example of trends in fishing effort and catches of lobsters. In this case the error was made worse by calculation of the (non-parametric) Sen's estimate of slope - which assumes a linear relationship. A related issue is the practice of attaching a least squares regression line Artefactual correlations are as big a problem with non-parametric correlation and regression as with parametric correlation and regression. In one example of a negative correlation over time between antidepressant use and the suicide rate, causality was highly questionable because a number of possible confounding factors changed over the same time period. We give two examples of a (potentially) artefactual correlation arising from there being an uneven distribution of confounding factors. In one study (on what signals birds use as cues to detect herbivore-rich trees) values from both treatment and control plots were included in the correlations investigating concentrations of individual chemicals. There was a tendency to get positive correlations because there was a higher level of all the chemicals in the control plots. A similar situation resulted from including data from both inside and outside the national park when assessing the correlation between number of responding lions and distance inside the park. In experimental studies with random allocation confounding factors should be evenly distributed over the different levels of X - but in observational studies the researcher must carefully assess the situation to avoid artefactual correlations. What the statisticians sayConover (1999)![]() ![]() ![]() ![]() ![]() Sen (1968) Wikipedia provides sections on the Spearman rank correlation coefficient,
|