![]() Biology, images, analysis, design... |
|
"It has long been an axiom of mine that the little things are infinitely the most important" |
|
One-way random effects ANOVA: Use & misuse(analysis of variance, intraclass correlation coefficient, repeatability, measurement error)Statistics courses, especially for biologists, assume formulae = understanding and teach how to do Use and Misuse
One-way random effects ANOVA is used less than one-way fixed effects ANOVA, Given its limited use, and the fact that initial calculations are identical, it is perhaps not surprising that there is some confusion over when to use random effects ANOVA. We give one example of where the random effects model was used simply on the grounds that there were many groups (in that case countries), rather than on the grounds that selection of the chosen countries was (more or less) random. In another example the added variance component and repeatability were estimated as part of a fixed effects ANOVA - this has the inevitable result of giving a very high repeatability. Many authors do not seem be aware of the need to select groups (usually individuals in the case of measurement error) at random. Whilst a (genuine) random sample might not be possible, it would at least help if authors indicate that every effort was been made to avoid bias in selection of individuals. If the ANOVA is only being carried out to estimate repeatability, then the normal errors assumption of ANOVA does not have to be met. Indeed ANOVA can be used on binary data to obtain the repeatability estimate - although if one is to estimate the confidence interval for the coefficient in the usual way, normal errors are assumed. However, the assumption of homogeneity of variances does still have to be met. We find a number of examples where this was not checked, and some cases where variances were clearly not homogeneous. Historically there have been many problems in actually estimating repeatability. Researchers have used Interpreting the estimate of repeatability is also a fairly fraught area. The essentially relative nature of repeatability is seldom appreciated. For example, when assessing measurement error its value depends on both the variability between sampling units and the variability between repeated readings on the same sampling unit - clearly if a very variable group of sampling units are selected then repeatability of any measurement will be higher than if a homogeneous group are chosen. Nevertheless it does have value for the particular situation chosen, and the aim should be to maximize repeatability - just demonstrating 'significant repeatability' is not useful. We give examples where reproducibility is confused with validity. What the statisticians sayUnderwood (1997)![]() ![]() ![]() ![]() ![]() Bland & Altman (1996) The Handbook of biological statistics covers Model I versus Model II ANOVA
|